128 research outputs found

    Devolution dynamics of Spanish local government

    Get PDF
    Over the last few years, ther has been a devolutionary tendency in many developed and developing countries. In this article we propose a methodology to decompose whether the benefits in terms of effciency derived from transfers of powers from higher to municipal levels of government "the "economic dividend" of devolution) might increase over time. This methodology is based on linear programming approaches for effciency measurement. We provide anapplication to Spanish municipalities, which have had to adapt to both the European Stability and Growth Pact as well as to domestic regulation seeking local governments balanced budget. Results indicate that efficiency gains from enhaced decentralization have increased over time. However, the way through which these gains accrue differs across municipalities -in some cases technical change is the main component, whereas in others catching up dominates

    On the determinants of local government debt: Does one size fit all?

    Get PDF
    This paper analyzes the factors that directly influence levels of debt in Spanish local governments. Specifically, the main objective is to find out the extent to which indebtedness is originated by controllable factors that public managers can influence, or whether it hinges on other variables beyond managers’ control. The importance of this issue has intensified since the start of the crisis in 2007, due to the abrupt decline of revenues and, simultaneously, to the stagnation (or even increase) in the levels of costs facing these institutions face. Results can be explored from multiple perspectives, given that the set of explanatory factors is also multiple. However, the most interesting result relates to the varying effect of each covariate depending on each municipality’s specific debt level, which suggests that economic policy recommendations should not be homogeneous across local governments

    KM3NeT front-end and readout electronics system: hardware, firmware, and software

    Full text link
    [EN] The KM3NeT research infrastructure being built at the bottom of the Mediterranean Sea will host water-Cherenkov telescopes for the detection of cosmic neutrinos. The neutrino telescopes will consist of large volume three-dimensional grids of optical modules to detect the Cherenkov light from charged particles produced by neutrino-induced interactions. Each optical module houses 31 3-in. photomultiplier tubes, instrumentation for calibration of the photomultiplier signal and positioning of the optical module, and all associated electronics boards. By design, the total electrical power consumption of an optical module has been capped at seven Watts. We present an overview of the front-end and readout electronics system inside the optical module, which has been designed for a 1-ns synchronization between the clocks of all optical modules in the grid during a life time of at least 20 years.The authors acknowledge financial support from the funding agencies: Agence Nationale de la Recherche (Grant No. ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (Grant Nos. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, Grant No. FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Plan Estatal de Investigacion [refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)], Severo Ochoa Centre of Excellence program (MINECO), Red Consolider MultiDark (ref. FPA2017-90566-REDC, MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), "la Caixa" Foundation (ID 100010434) through the fellowship LCF/BQ/IN17/11620019, and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 713673, Spain.Aiello, S.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.... (2019). KM3NeT front-end and readout electronics system: hardware, firmware, and software. Journal of Astronomical Telescopes, Instruments, and Systems. 5(4):1-15. https://doi.org/10.1117/1.JATIS.5.4.046001S1155

    Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA

    Full text link
    [EN] The next generation of water Cherenkov neu-trino telescopes in the Mediterranean Sea are under con- struction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmo- spheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4¿ if the true order- ing is normal and 2.3¿ if inverted, after 3 years of data taking. The precision to measure ¿m² and ¿¿¿ were also estimated and found to be 85.10¿¿ eV² and (¿¹.¿ -3.1)¿ for normal neu- trino mass ordering and, 75.10¿¿ eV² and (¿².¿ -7.0)¿ for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude ¿The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034 and CIDEGENT/2019/043) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain.Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.... (2022). Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. The European Physical Journal C. 82(1):1-16. https://doi.org/10.1140/epjc/s10052-021-09893-011682

    Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA

    Full text link
    [EN] KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles ¿¿¿, ¿¿¿, ¿¿¿ and the effective angle ¿µ¿, over a broad range of mass squared difference ¿m² ~ [10¿5, 10] eV2, allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolia (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034,/2019/043,/2020/049) programs, Junta de Andalucia (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.Aiello, S.; Albert, A.; Alshamsi, M.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.... (2021). Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. Journal of High Energy Physics (Online). 10:1-22. https://doi.org/10.1007/JHEP10(2021)1801221

    The KM3NeT multi-PMT optical module

    Full text link
    [EN] The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Européenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18- 1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell¿Università e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappel¿k Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (refs. PGC2018-096663- B-C41,-A C42,-B-C43,-B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolía (refs. GRISOLIA/2018/119,/2021/192) and GenT (refs. CIDEGENT/2018/034, /2019/043,/2020/049,/2021/023) programs, Junta de Andalucía (ref. AFQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.Aiello, S.; Albert, A.; Alshamsi, M.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.... (2022). The KM3NeT multi-PMT optical module. Journal of Instrumentation. 17:1-23. https://doi.org/10.1088/1748-0221/17/07/P070381231

    Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering

    Full text link
    [EN] This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of ¿m² between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5¿ determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolia (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034,/2019/043,/2020/049) programs, Junta de Andalucia (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.Aiello, S.; Albert, A.; Alshamsi, M.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.... (2022). Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering. Journal of High Energy Physics (Online). (3):1-31. https://doi.org/10.1007/JHEP03(2022)055131

    Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search

    Get PDF
    The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    Get PDF
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema® ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper
    corecore